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1. Introduction 
The Surrogate Remote Sentry (SRS) system being developed by the Night 
Vision and Electronic Sensors Directorate (NVESD) of the Communica- 
tions-Electronics Command (CECOM) is an Advanced Technology Dem- 
onstration (ATD) for the Rapid Force Projection Initiative (RFPI). The sys- 
tem is a remotely controlled surveillance system, designed to be implanted 
behind enemy lines. The SRS is used to monitor and provide targeting in- 
formation on approaching enemy vehicles on the battlefield for perimeter 
defense applications. It consists of integrated, compact, electro-optic sen- 
sor modules, including one day camera, one night camera, and a laser 
rangefinder, all mounted on a remotely controlled pan and tilt motor. Us- 
ing the SRS, a remote operator can track and determine the range of targets 
as they approach the sensor. Because of the narrow field of view (NFOV) 
of both cameras on the SRS, monitoring a large area for approaching tar- 
gets becomes a difficult task. An omnidirectional sensor is therefore re- 
quired to cue the SRS to the direction of approaching targets in the battle- 
field. 

At the request of NVESD, the Army Research Laboratory (ARL) integrated 
the Acoustic Detection System (ADS) with the SRS. The ADS is an omnidi- 
rectional acoustic sensor system that uses a circular array of microphones 
and a simple processor to detect, track, and classify targets in the battle- 
field. When targets are detected, the ADS determines lines of bearing 
(LOBs) to the targets relative to the position of the microphone array. 
When integrated with the SRS, the ADS can cue the SRS to approaching 
targets as they come within the detection range of the acoustic sensor. 

2. ADS Description 
Acoustic technology has attracted considerable interest in recent years be- 
cause of its many advantages. Acoustic sensors are passive, have non-line- 
of-sight (NLOS) detection capability, and can localize and identify targets 
at long ranges. 

The ADS was developed at ARL for the long-range detection of ground 
and air vehicles in a typical battlefield environment. The ADS consists of 
an array of microphones connected to a signal processing box that deter- 
mines the LOB's frequency, signal-to-noise ratio, and classification of de- 
tected targets. The sensor array consists of several sensors positioned in a 
specific geometric configuration to maximize beamforming capabilities. 

2.1      Acoustic Array Microphone Geometry and Hardware 

The acoustic array is composed of eight ceramic microphones connected to 
an electronic box that contains signal conditioning amplifiers. A gain of 40 
or 60 dB is provided to boost the signal levels so as to produce maximum 
voltage at a sound pressure level (SPL) of 120 dB. 



The array is configured with seven microphones, six arranged in an 8-ft- 
diameter circle, and one in the center. The microphones are provided with 
6-in.-diameter windscreens to reduce the effects of wind noise and are 
mounted on aluminum spikes that hold them vertically to the ground. The 
acoustic array can be configured in a variety of ways, depending on the 
mission. The beamformer (BF) software that resides in the processor unit 
can be reprogrammed to process LOB information based on a chosen array 
geometry. The acoustic system estimates target bearing using a frequency- 
domain BF to provide a degree of directional noise rejection and allow 
high-resolution estimation of the direction of arrival of the various signals. 

2.2      Array Processor Box Architecture 

The ADS is designed to detect, localize, and identify both air and ground 
combat vehicles. Narrow-band spectral analysis exploits the periodic na- 
ture of vehicular noise sources available in a typical battlefield environ- 
ment (fig. 1). Subsequent operations process the spectral information to 
detect the sources of noise. A tracking function exploits the time continuity 
of the process to refine localization estimates and derive direction of travel 
and speed. Target bearing information is then used to cue the optical sys- 
tem. The following is a step-by-step explanation of how acoustic signals 
are processed. 

2.2.1    Data Input, Signal Conditioning, and Digitization 

The analog outputs from the microphones are filtered with a four-pole 
Butterworth low-pass filter with a cutoff of 300 Hz. This provides the anti- 
aliasing protection that needs to be carried out before digitization. The 
analog signals are converted to 16-bit digital words at a rate of 1024 
samples per second. All seven channels are sampled simultaneously. The 
processor consists mainly of a hardened personal computer. The signal 
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processing operations are carried out on an MM96 Ariel board, which con- 
sists of two digital signal processing (DSP) units, each with a potential 
processing capacity of 50 megaflops. Processed data are in turn sent out 
through an RS232 interface to the stepper motor. 

Figure 2. 
Conventional delay 
sum beamforming. 

2.2.2 Spectral Analysis 

Each channel of digital data is converted to the frequency domain by the 
application of a fast Fourier transform (FFT) that uses a 2048-point data 
frame (2 s) and a Hamming window. These frames are overlapped by 50 
percent, so that the effective output rate of spectral data is 1 Hz. Although 
processing resources are available to compute longer FFTs, improved 
spectral resolution does not result in improved target detection because 
the targets are not stationary. 

2.2.3 Beamformer 

The acoustic system estimates target bearing using a frequency-domain 
beamforming algorithm to provide a degree of directional noise rejection 
and allow high-resolution estimation of the direction of arrival of the vari- 
ous signals. Twelve beams are formed simultaneously. Data from the mi- 
crophones are processed through a delay-sum BF. The delay-sum BF (fig. 
2) is a method where each signal is delayed by an amount that will bring 
the signals from all channels into coincidence. 

The beamforming implementation assumes that the microphones were 
placed in the desired array geometry and that all microphones have iden- 
tical gain and phase characteristics. When these conditions are not 
achieved, errors occur in the pointing direction of the beam, which in turn 
result in bearing estimation errors. Three types of errors can occur: array 
misalignment, microphone displacements, and variations in microphone 
gain and phase characteristics, 
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Array misalignments can be minimized if the array is carefully laid out in 
a presurveyed position where true north has been clearly determined. In 
situations where true north cannot be accurately surveyed, the array is 
pointed to magnetic north, which may be subject to large deviations. The 
effect of a misalignment error can be corrected for by the addition of the 
number of degree deviations to the measured bearing. 

Misplacement errors occur when the microphone positions do not corre- 
spond to the intended locations. This type of error can be minimized by 
the use of a rigid microphone array template. An error of 1° can arise from 
the misplacement of one of the microphone arrays by 6 in. 

Microphone errors can also cause deviations. The beamforming equation 
assumes that all microphones have identical phase and gain characteris- 
tics. The inexpensive microphones used in the ADS are subject to varia- 
tions in phase and gain that are pronounced below 100 Hz, precisely in the 
band of frequencies where most of the targets of interest are. Phase errors 
can be serious for small arrays. In an actual array, each microphone will 
have random phase and gain errors. Phase calibration is then performed to 
minimize bearing errors. 

2.2.4 Peak Picking and Harmonic Line Association 

The output of the BF is directed to a peak picking function that identifies 
the presence of narrow-band spectral lines in each of the BF channels. The 
algorithm carries out the peak picking operation by finding local maxima 
in the spectra and comparing those maxima to the median level of the 
spectral lines in a symmetric band around them. If the potential peak ex- 
ceeds the local noise level by a threshold value, the peak is detected. 

The detected peaks and their frequencies are sorted by the harmonic line 
association (HLA) function into families of harmonically related narrow- 
band lines, which form a harmonic set. The presence of a harmonic set in- 
dicates the presence of a target, since most propulsion systems emit peri- 
odic sounds. 

For each detected peak, a fine-resolution bearing is computed. Each spec- 
tral peak will have a maximum level in a certain main beam, with lower 
levels in the adjacent beams. These peaks are input to a quadratic interpo- 
lator that computes the bearing at which the peak amplitude occurs. Al- 
though the spatial resolution of each beam is limited by the available 
signal-to-noise ratio (SNR) at the output of the BF, the algorithm provides 
fairly good results for most targets of interest. 

2.2.5 Tracking and Data Association 

Target reports containing bearing information are produced every second 
by the sensor algorithm. The data are partitioned into sets of observations 
or tracks produced by the same source. An observation is referred to a 
measured quantity like position (bearing), velocity, and time estimate, in- 
cluded in an output detection of a sensor array. Once tracks are formed (so 



that background and false reports are reduced), target information can be 
estimated, such as velocity and future predicted bearing. Filtering and pre- 
diction methods are used to estimate present and future target kinematic 
quantities, such as position and velocity. An alpha-beta tracking filter is 
implemented to reduce the number of false reports and provide an asso- 
ciation of incoming data with existing tracks. The alpha-beta filter is a fad- 
ing memory type that uses fixed tracking coefficients. Data received from 
previous scans are included in the present estimate. These data tracks are 
associated to determine the target direction and bearing rate of change. 
Report association takes into consideration many points of data (from mul- 
tiple targets), with their inherent measurement errors and ambiguities. 

The alpha-beta filter has an advantage over other adaptive filters because 
of its simple implementation. The smoothed (filtered) position at scan k is 
defined by 

xs(k) = xp{k) + a[x0(k)-xp(k)], (1) 

where xo(k) is the observation received at scan k, and a and ß are the fixed 
coefficient filter parameters. The velocity, which equals the rate of change 
of position at scan k, is defined as 

vs(k) = xs(k) = vs(k-l) + ^F[x0(k)-xp(k)] , (2) 

where T is equal to the sampling interval. The quantity q is normally de- 
fined to be unity, but when no observations are present, its value defaults 
to the number of scans since the last measurement. The future predicted 
position is defined as 

xp(k + l) = xs(k) + Tvs(k). (3) 

The initialization process is defined as 

xs(l) = xp(2) = x0(l), (4) 

ys(l) = 0, (5) 

,S(2)=*°(Y°(1). (6) 
Equation (1) is used directly when an observation is received at scan k. 
When the probability of detection is low, the observation does not report a 
line of bearing. Then the smoothed position is set equal to the prediction, 
xs(k) = Xp(k), and vs(k) is unchanged. This amounts to setting xo(k) = xp{k). 
The prediction xp(k + 1) is computed next. 

Several criteria have been used in estimating the filter fixed coefficients. 
The ADS algorithm uses a value of 0.9 for a and a value of 0.25 for ß. Al- 
though there are other strategies for picking the values for a and ß, the 
ones used in the ADS are based on experience from trials performed in 
previous field experiments. 



2.2.6   Target Identification 

The selection of appropriate target-signature features is critically impor- 
tant in the effectiveness of target ID algorithms. For robust target identifi- 
cation, invariant features and interfeature correlations must be deter- 
mined. The training data set selected must have a large enough feature set 
so that different targets can be uniquely separated in feature space, both 
from other targets and from the multitude of background conditions and 
noise. Detection of ground targets and identification from their acoustic 
emissions are particularly difficult, since normal operating conditions pro- 
vide many features that are anything but invariant. Normal but time- 
varying features of ground vehicles are due to variations in driver opera- 
tion, terrain topology, and ground composition. All contribute to the 
nonstationary nature of the acoustic power spectrum of the target. Target 
aspect, signal propagation, and multipath effects are additional factors, 
which may or may not be time dependent, but which can contribute to 
power spectrum variability. Two techniques are currently used to identify 
targets: maximum likelihood classifier and neural network processing. The 
latter approach currently provides more robust performance, together 
with higher probability of correct identification. 

3.  System Operation 

Figure 3. SRS 
mounted on step 
motor. 

In the fully integrated system, the ADS cues the SRS to the direction of ap- 
proaching targets through a stepper motor. The pan and tilt platform of 
the SRS is mounted on top of the stepper motor, which is controlled by the 
ADS (fig. 3). 

During operation, the SRS operator monitors images received through the 
two cameras. The ADS continuously monitors the surrounding environ- 
ment for harmonically related sounds in the "window of interest" (an ad- 
justable scan area that will be monitored for approaching enemy targets; 
the ADS is thus prevented from tracking in areas where friendly targets 
are positioned). When the ADS detects a potential target, it cues the SRS to 
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point the cameras in the direction of the detected target. The SRS operator 
then verifies it as a valid target through the camera images and assumes 
control of the target tracking with the pan and tilt motor of the SRS. The 
pan and tilt motor allows the operator to optically track the target and find 
its range with the laser rangefinder. The operator then re-engages the ADS 
control of the stepper motor to track other targets. 

In a multiple-target situation, the ADS is designed to track and cue the SRS 
to the strongest acoustic signal within the window of interest. 

3.1      Software Integration 

The integration of the ADS with the SRS required additions to the current 
ADS software for control of the stepper motor and communications with 
the SRS. Figure 4 diagrams the software flow of the modified ADS soft- 
ware. 

A detailed description of the ADS software follows: 

1. The ADS and stepper motor software algorithms are initialized. 

2. The ADS program is executed until the LOBs are calculated. A minimum 
of zero and a maximum of eight LOBs are calculated, with the lines num- 
bered from 0 to 7 according to signal strength (0 for the LOB with the 
strongest signal strength). 

Figure 4. SRS software 
flow diagram. Initialization 
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3. The strongest LOB in the window of interest is picked out. In some in- 
stances, there may be no LOBs in the window of interest, in which case the 
ADS program will bypass all modifications and continue to step 7. 

4. The program passes the chosen LOB through a filter to eliminate false re- 
ports and provide a smooth continuous track. The filter compares the cur- 
rent LOB with the previous 10. If three of the previous 10 are within ±10° 
of the current LOB, the current LOB becomes the new position to cue the 
stepper motor. All the filter constants can be changed before the start of the 
program. For this configuration, the filter length is 10, the match number is 
3, and the filter error is 15. If the current LOB does not meet the filter re- 
quirements, the program will again bypass the remaining modifications 
and continue to acquire new targets. 

5. If the LOB passes the filter requirements, the control line to enable the mo- 
tor is checked next. The control line is a simple high or low signal coming 
from the SRS and fed into a data line on the parallel port of the ADS com- 
puter. If the line is high, the ADS program will again bypass the remaining 
modifications and continue to step 7. 

6. If the motor enable control line is low, the ADS will move the stepper mo- 
tor to the new LOB and transmit the LOB in ASCII through the serial port 
of the ADS computer. The SRS reads the LOB information from the serial 
port and transmits it back to the remote operator controlling the SRS. 

7. The ADS checks for program termination resulting from operator com- 
mand or program error. If no termination is required, the ADS program 
continues back at step 2 to acquire new LOBs. 

The communications routines that are used to transmit the LOB over the 
serial port and read the motor enable control line over the parallel port are 
simple port interrupt and port polling routines, respectively, and have no 
effect on the system performance of the ADS. The motor control routine, 
on the other hand, directly affects system performance by changing the 
LOB update rate. The modified ADS will not update the LOB until the 
stepper motor has come to a complete stop after being cued. The maxi- 
mum amount of time required for updating the LOB therefore becomes the 
time needed for the stepper motor to move a full 180°. 

3.2      Hardware Integration 

The only hardware connections needed between the SRS and the ADS are 
the lines used to enable the motor and transmit the LOB information be- 
tween the two. The enable signal is transmitted from a simple plug connec- 
tion from the SRS to the parallel port on the ADS computer. The LOB infor- 
mation is transmitted from the RS232 serial port on the ADS computer to 
an RS232 serial port on the SRS. The serial information is transmitted with 
a format of 9600 baud, 8 data bits, 1 stop bit, and no parity. 

12 



4. Conclusion 
A recent field experiment tested the cueing of the SRS with the ADS to 
identify and correct problems. In September 1994, the system was included 
in the Early Version Demonstration (EVD) for RFPI. The ADS detected a 
single tank and, in following rims, a column of tanks, and properly cued 
the SRS to the correct bearing of the detected targets. The EVD was one 
month long, and the ADS was operated throughout by some Army scouts. 
The complete SRS was termed successful. This exercise provided the SRS 
with the capability for autonomous, remote, wide-area surveillance and 
target acquisition. The complete system will increase the scout's surviv- 
ability through the battlefield, extend his range and area of surveillance, 
and provide the capability to remotely and optically monitor detected tar- 
gets based on the performance of the acoustic sensors. 

5. Recommendations 
During the progress of this project, a few improvements were identified 
that will greatly enhance the performance of the SRS: 

1. Improve LOB accuracy by the use of a more sophisticated beamforming 
algorithm. 

2. Cue the SRS based on the identification provided by the acoustic sensor 
system and not on the strongest spectral peaks. In a multitarget environ- 
ment, some detected vehicles are mote lethal than others. A ranked list of 
identified targets will enhance the capability of the system and help cue 
the SRS to the more lethal target. 

3. Use a more sophisticated filter scheme to eliminate false alarms. A Kaiman 
filter would greatly enhance the reduction of false LOBs. 

4. Use a network of acoustic sensors to enhance the area of surveillance and 
to allow the target's location to be determined by triangulation of multiple 
LOBs. 

13 
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